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Abstract

We present a novel approach to enhance the challenging
task of Visual Question Answering (VQA) by incorporating
and enriching semantic knowledge in a VQA model. We first
apply Multiple Instance Learning (MIL) to extract a richer
visual representation addressing concepts beyond objects
such as actions and colors. Motivated by the observation
that semantically related answers often appear together in
prediction, we further develop a new semantically-guided
loss function for model learning which has the potential to
drive weakly-scored but correct answers to the top while
suppressing wrong answers. We show that these two ideas
contribute to performance improvement in a complemen-
tary way. We demonstrate competitive results comparable
to the state of the art on two VQA benchmark datasets.

1. Introduction
Visual Question Answering (VQA) is the task of provid-

ing a text-based answer to a text-based question related to

a given image [2]. The task is particularly challenging as

there is little restriction on the question itself, which could

be free-form and open-ended. The problem requires not

only to tackle classic challenges in computer vision such

as object detection and classification, but also to understand

where to focus attention in the image based on a question

presented in free form text. Malinowski and Fritz consider

VQA as a step towards a full fledged visual Turing test

[20, 21].

VQA is emerging as a new frontier in the effort to jointly

understand images and natural language. Recent years have

witnessed a surge of research on this problem, largely due

to the success of deep learning in the fields of computer vi-

sion and NLP [31, 10, 11]. One common theme in most

of these works is to treat the problem as a classification

task where CNN-based image representations are combined

with RNN- or CNN- based question representations for an-

swer prediction [2, 19, 20, 18]. Many approaches on how

to extract the features and how to combine them were sug-

gested. For example, attention-based models learn, based

Q: what are two hands holding a   
     half eaten jelly filled ? 
A1: plate:0.45 donut:0.30 sandwich:                
       0.19 slice:0.01 donuts:0.01 
A2: donut:0.65 sandwich:0.14 cake:  
       0.12 cupcake:0.03 plate:0.02 

Q: what is the man driving on the  
     highway during the day ? 
A1: oven:0.21 car:0.20 phone:0.17  
       bus:0.10 truck:0.09 
A2: car:0.81 truck:0.06 vehicle: 
       0.05 cars:0.02 phone:0.02 

Figure 1. Examples of our proposed semantically guided VQA.

The images are from COCO-QA dataset [17], and the ques-

tions/answers from [29]. We produce two sets of results for each

question. A1 are generated by a baseline approach, and A2 are

enhanced by our proposed approach. All the predictions are fol-

lowed by their confidence scores. Ground-truth labels are marked

in red and semantically related words are colored in blue for the

ease of illustration. Our proposed approach successfully predicts

the correct answers while the baseline does not.

on the question, which region in the image is the most rel-

evant to the question. Other approaches introduce external

knowledge to improve the question representation [34]. In

Section 2, we discuss these approaches in detail.

In this paper we propose two new ideas to enhance a

VQA model and enrich it with external knowledge. The first

idea injects external knowledge into the model by consider-

ing the semantics of the answers at the prediction level.
Note that this is different in principal than previous works

such as [34] which introduced semantic knowledge at the

representation level. The second idea continues the line of

work on improving visual representations. We apply Multi-

ple Instance Learning (MIL) [22, 32] to enrich concept rep-

resentations beyond objects in the visual model, in a similar

spirit to [6].

We start by describing our main contribution of this pa-

per. For motivation, consider the example on the right in

Figure 1. A1 lists the top predictions of a baseline model

while A2 are the predictions of our proposed model. We

can see that the baseline model assigns a higher probabil-
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ity to the wrong answer oven over the correct answer car.

Note however, that more predictions (i.e. bus and truck) in

the example are semantically related to car, and not to oven.

We observe many examples like this in the baseline results

especially when the model is not confident about the cor-

rect answer. Motivated by this, we design a new loss func-

tion that favors predictions that are semantically related to

the ground truth while penalizing those less relevant. Min-

imizing such a loss can help guide the model in the right

direction for boosting up the likelihood of the correct an-

swer and suppressing wrong predictions. As illustrated in

Figure 1, our proposed approach correctly picks car as the

answer while pushing oven away in the prediction. Worthy

to mention is that even if our approach fails to provide a

correct answer, it is more likely to choose an answer related

to the correct one (See the first example of Figure 6.), re-

ducing the risk of making embarrassing errors. In this work

we compute semantic similarity between concepts based on

Google’s pre-trained Word Embeddings [23], which was

learned from a large Google News corpus.

Our second contribution in this work is to improve

semantic concept representations in visual modeling for

VQA. The majority of the previous approaches extract vi-

sual features from CNNs such as VGG [31], GoogLeNet

[33] and ResNet [10]. While these models show promising

results, it is worth noting that they were pre-trained on Im-

ageNet with 1000 object categories, only a very small cov-

erage of the broad semantic domain. In VQA, on the other

hand, since the questions are free formed, an ideal model

would be required to go beyond objects to recognize a sub-

stantially larger set of concepts like humans do, including

numbers, colors, locations and attributes. To address this

issue, we adopt a weakly supervised model based on MIL

as the visual feature representation in our work [6]. This

model was trained on keywords from image captions on the

MS COCO dataset [17] including nouns, verbs and adjec-

tives. It has demonstrated better performance in detecting

and localizing nouns and adjectives than CNN-based classi-

fication models. Note that Attribute-based models for VQA

have been explored in [34]. However, our model is based

on MIL, thus is expected to provide better concept local-

ization [32], which is important for attention-based VQA

approaches.

To sum up, the major contributions of our proposed

method are two-fold:

• Enforcing semantic relatedness during training

through the loss function by incorporating external

semantic knowledge via word2vc embeddings. This

not only improves the performance, but also makes it

less likely to provide embarrassingly wrong answers.

• Enriching feature representation from an MIL model.

This representation not only enables better recognition

of attributes beyond objects, but also improves the lo-

calization of these concepts which is in particular im-

portant for attention-based models.

2. Related Work
One of the first works on VQA by Antol et al. [2],

presents a number of models as well as the VQA dataset

which is the largest to date. Driven by VQA and other

datasets, a number of approaches indexing global visual and

question representations are proposed [21, 29, 19, 1, 13].

Soon researchers find that visual representations that are

based on the entire image are often too coarse to attend to

the region of interest, which is crucial for accurate ques-

tion answering. Motivated by this, recent studies focus

on attention models. Yang et al. [37] present a multiple-

layer stacked attention network, which extracts the attended

region progressively by querying the questions multiple

times. Similarly, Shih et al. [30] project the question fea-

tures and image features into a common space and compute

the relevance of each sub-region via inner product. Xiong et

al. [35] propose several improvements to the memory and

input modules of dynamic memory network. Their best per-

formed model includes a two-layer encoder with sentence

reader and input fusion layer to allow for information flow

between sentences. Xu and Saenko [36] present a spatial

memory network, which is a recurrent neural network with

an explicit attention mechanism. The spatial attention archi-

tecture is able to align words with image patches informa-

tion stored in memory. Ilievski et al [12] propose a different

attention model. They use an off-the-shelf object detector

to determine the region of interest. Then LSTM is applied

to embed the information from regions together with global

features, which is then combined with the question repre-

sentation. Noh et al. [26] present a dynamic parameter

prediction network built on gated recurrent unit (GRU). To

solve large amount of parameters problem in their network,

they apply a hashing trick in the dynamic parameter layer.

Lu et al. [18] jointly learn a hierarchical attention mech-

anism on both image and the text, based on three levels:

word, phrase and question. Such hierarchical image-text

co-attention mechanism also appears in image captioning

literature [24].

Improvements on top of attention models. Attention

models have been proven effective in solving the VQA

problem. We now review works which, similar to our work,

explored different ideas on top of such models, such as mul-

timodal data fusion and external knowledge integration.

Fukui et al. [7] propose the use of bilinear pooling for

combining multi-modal information and suggest an effi-

cient compact implementation. Kim et al. [15] introduce

a low-rank bilinear pooling using Hadamard product. Kim

et al. [14] present another multimodal feature fusion model

based on deep residual learning. They use element-wise
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multiplication to learn the joint residual mappings for both

visual and textual features.

Wu et al. [34] use external knowledge from DBpedia

[3] and apply it to a LSTM model to improve answers pre-

diction. Gao et al. [9] propose a similar architecture but

decompose the LSTMs into encoding and decoding.

As an interesting study on VQA, Ray et al. [28] explore

the relevance of questions to images. Specifically, their

proposed LSTM-based method first determines whether the

question is “visual” or not. If visual, it further determines

whether the question is relevant to the given image or not.

3. Our Approach
Since our method can be easily incorporated with any

classification based approach to VQA, we implement our

ideas on top of a recent approach [18] which achieved state

of the art performance, Hierarchical Co-Attention, as the

baseline to illustrate our idea. Let us start by describing this

approach at a high level.

3.1. Hierarchical Co-Attention

The basic idea of co-attention models is to learn jointly

from the question and the image which regions in the im-

age and the question are the most relevant to provide an

answer. The Hierarchical co-attention (HieCoAtten) model

proposed by Lu et. al. [18] perform co-attention based on

three different levels in the text: word level, phrase level and

sentence level. Roughly speaking, word-level features are

extracted from words embedding. Phrase-level features are

computed by a convolutional layer that receives the word

embeddings as inputs, with three different window sizes:

unigram, bigram, and trigram. Question-level features are

computed by a LSTM receiving the phrase-level features as

inputs. Correspondingly, three levels of visual features are

produced by the co-attention mechanism. The visual fea-

tures are extracted from a CNN (VGGnet [31] or ResNet

[10]) that was pre-trained on ImageNet. The final feature

vector is computed recursively using a multi-layer percep-

tron (MLP) from word-level to question-level. We refer the

reader to [18] for more details.

3.2. Multiple Instance Learning (MIL)

Models pre-trained on the ImageNet dataset [5] such as

AlexNet [16], VGGnet [31], GoogLeNet [33] and ResNet

[10] have been widely applied to extract features from im-

ages in a plethora of applications. These networks special-

ize in object classification and recognition. We argue that

for VQA this is not enough. Consider the right most exam-

ple in Figure 5. The above mentioned networks are trained

to recognize horses but not the color white or the action

pulling. Given the free form and open ended nature of the

questions, feature representations of verbs and adjectives

are just as critical to solve VQA as objects do.

Avg. Vec. 

car: 0.35 

bus: 0.25 horse: 0.40 

Avg. Vec. 

bus: 0.25 

car: 0.35 

horse: 0.4 

(a) MSE loss (b) semantically guided loss 

Figure 2. An illustration of comparison between traditional MSE

loss (a) and the proposed semantically guided loss (b). In MSE,

categories representations are pairwise equidistant. As shown in

(a), if the ground-truth label car is predicted with probability 0.35

and horse is predicted with probability 0.4, the weighted average

vector is closer to horse. In (b) on the other hand, car and bus
are closer to each other than each of them to horse. As a result,

they together pull in the direction of the cluster of word represen-

tations that are semantically related to vehicles and as a result, the

weighted average vector is closer to car than to horse.

Motivated by this, we replace the visual feature extrac-

tion mechanism in the co-attention model of [18] with a

MIL model from [6]. This model is based on VGGnet ar-

chitecture and it was trained on Microsoft COCO captions

dataset. The 1000 categories of the model are the most com-

mon words in the training captions and it includes nouns,

verbs and adjectives. As such, it is richer than models that

were pre-trained on ImageNet for object classification and

hence more suitable for VQA. In addition it tends to have

better localization performance than classification models

which is important for attention-based models.

3.3. Semantically Guided Loss

Most classification neural networks based models for

VQA have a softmax layer at the top outputting a proba-

bility distribution p ∈ R
C for each image/question pair:

pi =
exp(hi)∑
i exp(hi)

, i = 1, . . . , C, where C is the num-

ber of categories. During training a standard loss func-

tion is applied to quantify the loss between the prediction

distribution p and the ground truth distribution over cat-

egories t ∈ R
C . In the case of a single correct label, t

has all the probability weight on the one ground truth cate-

gory. Typically, cross entropy is the loss function of choice:

LCE(p, t) = −∑
i tilog(pi).

1

When we observe the failure cases generated by the clas-

sification model A1 in Figure 1, we find interesting phe-

nomena: (1) For many cases, the ground-truth label is one

of the top ranking predictions. For example, in the right ex-

ample, the ground-truth car is ranked second with only 1%

probability less than oven. (2) A number of predictions that

are semantically related to the ground-truth are also scat-

tered among the high ranking predictions. This often hap-

pens because of the nature of a classification model in which

1Throughout we use bold letters to represent vectors and matrices.
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each category’s contribution to the loss is equally weighted.

That is, the model detects vehicle related elements in the im-

age (e.g. steering wheel) and in the question (e.g. driving),

but it is not confident enough regarding which type of vehi-

cle is the correct one and therefore spreads the probability

weights among several vehicle related categories.

Motivated by this, we propose a loss function which in

addition to the standard cross entropy loss, has a compo-

nent that measures the loss based on the semantic related-

ness of the predictions to the ground truth. Here semantic

relatedness is based on distances between word2vec repre-

sentations of the predictions.

We define the Weighted Average Vector (WAV) loss func-

tion for a given image-question example as follows:

LWAV(p, t) = Lc(p, t) + λ‖Vp− v̂t‖22 (1)

where V ∈ R
d×C is a matrix whose columns are the

word2vec embeddings of the word categories in a d-

dimensional vector space. v̂t ∈ R
d is the word2vec em-

bedding of the ground-truth label t, and p ∈ R
C is the

probability vector after the softmax activation function. λ
is a balancing parameter between the two components. 2

In short, the loss function has a standard cross entropy

loss component as well as a semantic component which pe-

nalizes the model during training in proportion to the Eu-

clidean distance between the vector which is the weighted

average of the word2vec representations of all the cate-

gories and the representation of the ground truth. The ra-

tional is that if the model gives high probability to seman-

tically unrelated categories, it is severely penalized by the

semantic component of the loss. The cross entropy compo-

nent plays a role in determining the correct answer among

semantically related categories. The combination of the two

gives the best performance.

Comparison to Mean Squared Error (MSE) loss. We

note that there is an interesting correspondence between the

semantic component of WAV and the MSE loss in the case

of a single correct label. In such a case, MSE is written as:

LMSE(p, t) = ‖Ep− et‖22 (2)

where t is the ground truth and p ∈ R
C is the probability

vector after the softmax activation function. E ∈ R
C×C is

the diagonal matrix whose diagonal entries are 1 and it is 0

elsewhere. et ∈ R
C is the vector that is 1 in the t’th en-

try and 0 elsewhere, i.e. it is the indicator vector (a.k.a the

one-hot vector) of category t. In words, MSE penalizes the

model during training in proportion to the Euclidean dis-

tance between the vector which is the weighted average of

the indicator vectors of all the categories and the indicator

vector of the ground truth.

2Due to the limited page length, a sensitivity study on parameter λ is

moved to the supplementary material.

Our semantic loss replaces the indicator vector represen-

tations (in categorical space) in which each pair of repre-

sentations has the same distance, with a word2vec repre-

sentation (in semantic space) in which pairwise distances

are semantically driven. In Figure 2 we illustrate the effect

of this on the model’s predictions.

3.4. Implementation details

To implement our idea, we use Torch deep learning pack-

age [4]. We train the model with stochastic gradient descent

using Rmsprop algorithm. We set the base learning rate 4e-

4, momentum 0.99 and weight decay of 1e-8. The MIL fea-

tures, are extracted from the model of [6] that was trained

on COCO captions dataset. We extract features from the last

pooling layer (i.e. pool-5 layer) before the fully-connected

layers with dimension of 18 × 18 × 512, where 18 × 18
is the number of patches and 512 is the feature dimension.

The MIL features are fixed and are not trained further.

The word2vec embedding is taken from [23]. It was

computed on top of the Google News corpus and embeds

words into a space of dimension d = 300. Note that the

model only embeds single words. When class label is not

a single word but rather a phrase, e.g. black and white, we

take the representation of the first word to represent the la-

bel. This practice does harm the representation accuracy

of labels to some extent. Fortunately, the number of labels

with multiple words is much smaller than single words. As

reported in [2], about 90% of the answers have single words

and 98% of answers do not exceed three words. One could

use several other more sophisticated strategies, e.g. doc2vec

[27] to handle it, which is not the focus of this paper.

4. Experiments

4.1. Evaluation data and metric

We evaluated our approach on two datasets: Toronto

COCO-QA [29] and VQA [2]. Currently these are two of

the widely used benchmarks for VQA evaluation.

COCO-QA is based on the Microsoft COCO dataset.

The ground truth annotations of this dataset were automati-

cally generated by running a text parser to parse the image

captions and then replacing the keywords with correspond-

ing question words to form question/answer pairs. There are

a total of 78,736 questions for training and 38,948 test ques-

tions in COCO-QA, including four types of questions: ob-

ject (70%), number (7%), color (17%), and location (6%).

All the answers are single words. Top-1 accuracy is the

most widely applied evaluation metric for COCO-QA. We

report it in Table 1 for all the methods. Besides, for the an-

alytical study of the proposed method, we also report top-5

accuracy in Figure 3.

VQA [2] is a benchmark dataset for visual question an-
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swering3. Unlike COCO-QA, VQA uses human-annotated

questions and answers. It contains a total of 6,141,630

question-answers pairs, which are split into three subsets,

248,349 for training, 121,512 for validation, and 244,302

for testing. There are three major sub-categories for ques-

tions in this dataset, including yes/no, number and others.

Each question has 10 free-response answers from differ-

ent annotators. Two settings are provided for evaluation

on VQA , open-ended and multiple-choice. In the open-

ended setting, there are possibly multiple correct answers

to the same question while in the multiple-choice case, the

answer is limited to 18 pre-specified possible candidates

only. We followed the most widely used experimental set-

ting in [2, 37, 18], and used the top 1000 most frequent an-

swers in training and testing. Note that these 1000 answers

only cover 86.54% of the total number of questions in the

development set (train+val), thus the highest performance

one could expect for our approach, as well as most previ-

ous works, on the validation set would be at most 86.54%.

In this work, we trained our models on the development

set and reported the performance on the test-dev and test-

standard datasets using the VQA evaluation server.

Following previous works, we use a different accuracy

evaluation metric. Each question has ten answers from ten

different annotators. A prediction is considered correct if at

least three annotators suggested it as their answer. In addi-

tion, a prediction receives a partial score even if only one

or two annotators suggested it. Specifically, for a predicted

answer a and a set of answers T for a given image-question

pair, the classification accuracy is defined as

Acc(a, T ) = min

{∑
t∈T I[a = t]

3
, 1

}
(3)

where I is the indicator function. The accuracy of the

model is the average over all the image-query pairs in the

test set.

4.2. Results

We compared our approach to a number of recently de-

veloped techniques for VQA. These include 2-VIS+BLSTM
[29], IMG-CNN [19], LSTM Q+I [2], Region Sel. [30],

SMem [36], SAN [37], FDA [12], DMN+ [35], DPPnet [26],

RAU [25] and HCoAtten [18].

Among them, the last seven approaches starting from

Region Sel. are attention-based, thus in general outper-

forming the previous models, such as VIS+BOW [29] and

VIS+LSTM [29], which are based on global visual features.

We consider HieCoAtten as the baseline in our compari-

son as it is one of the most competitive approaches on both

COCO-QA and VQA, and our approach is built on top of

3Now, VQA has two versions. We started preparing this manuscript

before the release of VQA 2.0. All the results are reported on VQA 1.0.

Table 1. Top-1 accuracy results on the COCO-QA dataset. “-”

indicates that no results are available.

Methods Obj. Num. Col. Loc. All

2-VIS+BLSTM [29] 58.2 44.8 49.5 47.3 55.1
IMG-CNN [19] - - - - 58.4
DPPnet [26] - - - - 61.2
SAN(2, CNN) [37] 64.5 48.6 57.9 54.0 61.6
HieCoAttena(VGG)[18] 65.6 48.9 59.8 56.7 62.9
HieCoAttena(ResNet)[18] 68.0 51.0 62.9 58.8 65.4

CoAtten(MIL) 65.6 51.7 64.7 56.3 63.9
CoAtten+WAV(MIL) 66.4 51.7 64.8 56.4 64.5
CoAtten+WAV(ResNet) 68.6 51.0 64.6 57.8 66.1
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Figure 3. Top-5 accuracy results of HieCoAttena(VGG)[18],

CoAtten(MIL), and CoAtten+WAV(MIL) on COCO-QA.

it. Similar to [18] we trained two models, one based on

a VGG architecture (denoted CoAtten+WAV(MIL)) and the

other on ResNet (denoted CoAtten+WAV(ResNet)). Thus

in order to investigate the added value of our approach it is

instructive to compare the respective performances of the

VGG based models and the ResNet based models. The

only model available to us that was trained using the MIL

paradigm was VGG based. The ResNet model was trained

using standard supervised learning. To isolate the contri-

bution of the MIL approach from the semantically guided

loss idea, we also trained the model CoAtten(MIL) with a

standard cross entropy loss.

Evaluation on COCO-QA. Table 1 shows the results of

different approaches on COCO-QA. We first notice that by

applying MIL-based features to HieCoAtten, i.e. the model

CoAtten(MIL), we already achieve better overall accuracy

in comparison to the VGG based baseline. In particular,

this model performs well on number and color, improving

HieCoAtten by almost 3 points and 5 points respectively.

This confirms that improving the visual representation by

models that are semantically richer and have better localiza-

tion abilities is critical for VQA systems. By further inte-

grating the semantically guided loss, CoAtten+WAV(MIL)

gains roughly another additional 0.6 point improvement

overall. It’s interesting to note that the semantic model

makes the biggest contribution on the object category, sug-

gesting that it is complementary to the MIL model which is

beneficial for the color and number categories. This is un-
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derstandable because word2vec provides better modeling of

semantic relatedness on object concepts than on other types

of word categories. For example, it is evident that car is

semantically closer to road than to donut while it is not so

certain that red is closer to black than to green.

Our ResNet based model CoAtten+WAV(ReseNet)

achieves the best performance in comparison to our other

models as well as to HieCoAtten. This is not surprising as

this architecture has proven to be superior to other archi-

tectures on many computer vision tasks. We speculate that

ResNet features trained in the MIL paradigm would per-

form even better.

Note that A-C-VQA outperforms our approach (which is

the second best) by a large margin on COCO-QA. Since

the attribute-based representation used by A-C-VQA was

learned directly from MS COCO image captions, it is not

surprising that it is more effective on COCO-QA questions

and answers which are automatically generated from the

same captions. However, as shown in Table 2, the same

model, when applied to the VQA dataset, gives inferior per-

formance in comparison to several other recently developed

approaches including ours. It is worth noting that our MIL

model was also trained on MS COCO captions. However,

our model generalizes well to the VQA dataset.

We also evaluated our models on the top-5 candidate

answers, as this measure seems more suitable to cap-

ture the intuition behind the WAV loss. It is observed

from Figure 3, the overall accuracy improves on COCO-

QA from 87.9% HieCoAtten(VGG) to 90.8% HieCoAt-

ten+WAV(MIL), showing a more significant improvement

than we get for top-1. It means that for those challenging

cases that all the methods fail, the proposed method makes

more good estimations than the baseline. The illustrative

examples are shown in Figure 6.

Evaluation on VQA. In Table 2 we compare the re-

sults of the different models on the VQA test sets for both

open-ended and multiple-choice settings. Our models out-

perform the corresponding VGG and ResNet HieCoAtten
models respectively. Specifically, comparing the two VGG

based models, our CoAtten+WAV(MIL) model obtains 1.3
point accuracy improvement on test-dev in the open-ended

setting. Also, as expected, compared to HieCoAtten, most

of the improvement is in the other category, which includes

questions related to objects and attributes such as color.

We emphasize that our approach is general and can be

combined with any supervised learning approach simply

by adding a semantically guided component to the loss

function. In this paper we combined our approach with

HieCoAtten [18] which was the top performer when we

initiated this work. Hence the most meaningful compar-

ison is to that model. However, since then, the recent

RAU model [25] obtained superior performance, reporting

81.9%, 39.0%, 53.0%, 63.3% for “Y/N”, “Num”, “Other”

Q: what   is running next to a
P: 0.012 0.010 0.357 0.022 0.051 0.043
Q: man parasurfing in the water ?
P: 0.038 0.280 0.024 0.011 0.123 0.026

Q: how many red motorcycles with
P: 0.081 0.042 0.143 0.171 0.041
Q: riders in  protective  gear are
P: 0.048 0.035 0.095 0.168 0.027
Q: on the street ?
P: 0.030 0.015 0.065 0.032

Q: how many red motorcycles  with
P: 0.573 0.018 0.017 0.120 0.013
Q: riders in  protective  gear are
P: 0.013 0.018 0.035 0.132 0.019
Q: on the street ?
P: 0.007 0.007 0.017 0.012

Q: what   is running next to a
P: 0.034 0.026 0.209 0.062 0.036 0.063
Q: man parasurfing in the water ?
P: 0.050 0.249 0.048 0.026 0.152 0.046

Figure 4. Visualization of attention maps on the COCO-QA

dataset. The top row is the original testing images. The second and

third rows are the corresponding attention maps and words from

our CoAtten+WAV(MIL) model and HieCoAttena(VGG) [18], re-

spectively. Best viewed in color.

and “All” in open-ended test-dev setting, respectively. We

combine our approach with RAU to further boost the per-

formance to 82.2%, 39.3%, 54.4% and 64.2%. RAU is not

listed in Table 2, as it is not official published. We also point

out that two recent papers [8] and [15], are not listed in Ta-

ble 2 as they measure performance on the 3000 and 2000

most frequent answers in the dataset respectively. Hence

they are incomparable to all previous works as well as ours

which look at the most 1000 frequent answers.

Attention Visualization. In Figure 4 we visualize the

attention maps generated on examples from the COCO-QA

test set by our model, CoAtten+WAV(MIL), as well as the

HieCoAtten(VGG) model. The images on the left are the

original ones. Images on the bottom two rows are the at-

tention heat maps, where red denotes the high probability

region of attention, and blue represents the low attended re-

gions. For each example, we also write the question with

the probability associated with each word. We highlight the

few steering words in each question, that match the attention

map. As observed in the first example in Figure 4, the steer-

ing words are the verbs “running” and “parasurfing” with
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Table 2. Results on the VQA dataset under open-ended (left) and multiple-choice (right) settings. “-” indicates no results are available.

Open-Ended Multiple-Choice

test-dev test-std test-dev test-std

Methods Y/N Num Other All All Y/N Num Other All All

Region Sel. [30] - - - - - 77.6 34.3 55.8 62.4 -
SMem [36] 80.9 37.3 43.1 58.0 58.2 - - - - -
SAN [37] 79.3 36.6 46.1 58.7 58.9 - - - - -
FDA [12] 81.1 36.2 45.8 59.2 59.5 81.5 39.0 54.7 64.0 64.2
DMN+ [35] 80.5 36.8 48.3 60.3 60.4 - - - - -
DPPnet [26] 80.7 37.2 41.7 57.2 57.4 80.8 38.9 52.2 62.5 62.7
C-A-VQA [34] 81.0 38.4 45.2 59.4 59.2 81.1 37.1 45.8 59.4 -
HieCoAttena(VGG) [18] 79.6 38.4 49.1 60.5 - 79.7 40.1 57.9 64.9 -
HieCoAttena(ResNet) [18] 79.7 38.7 51.7 61.8 62.1 79.7 40.0 59.8 65.8 66.1

CoAtten (MIL, ours) 79.6 38.6 50.6 61.2 61.5 79.6 40.4 58.3 65.2 65.4
CoAtten+WAV (MIL, ours) 79.8 38.6 51.3 61.8 62.0 79.9 39.8 59.4 65.6 65.9
CoAtten+WAV (ResNet, ours) 80.2 38.5 52.4 62.3 62.2 80.2 40.3 60.5 66.4 66.3

the highest probabilities of 0.357 and 0.280, respectively. In

the heat map generated by HieCoAtten(VGG) (bottom left

corner), the attention lies on the noun “man”. Even though

the verb “running” gets relatively high probability of 0.209,

there is no response on the running dog region. Due to the

MIL in modeling actions, our model responds intensively

to the verb ”running”. Similarly, in the second example, the

adjective word “red” as well as the nouns “motorcycles”

and “gear” get the highest response in the question. It is

observed that our attention heat map is more accurate, con-

centrated on the red motorcycles, compared to the one gen-

erated by HieCoAtten(VGG). In this example, our model

successfully attends the region of interest, and as a result

predicts the correct answer “three”.

Sensitivity Analysis. An important parameter in our ap-

proach is λ in Eq. (1), which balances the classification loss

and the semantically guided loss. We performed sensitivity

analysis of λ on COCO-QA to understand how it influences

the performance of our approach. As seen in Figure 7, either

a too small λ or a too larger λ results in a noticeable perfor-

mance drop while a value between 0.1 and 10 works rea-

sonably well with our approach. The best accuracy (64.5%)

of our approach is achieved when λ is set to 0.1.

Illustrative Examples. To better understand our ap-

proach, we provide more examples in Figure 5 and Fig-

ure 6, and visualize the top-5 predictions as well as their

prediction scores from the baseline and our proposed ap-

proach, i.e.,HieCoAtten(A1), MIL-CoAtten (A2) and CoAt-
ten+WAV(MIL) (A3). Ground-truth labels (if predicted) are

colored in red while predicted answers semantically related

to the correct answers are marked as blue.

We first look at a few examples where our approach

works well. Figure 5(a, b) illustrate that our approach (A2)

correctly predicts purple and four as the answers while the

baseline does not, clearly demonstrating the advantage of

the semantically enriched MIL representation over a general

CNN representation. Figure 5(c, d) further show that our

semantic-guided model (A3) can push up weak predictions

to the top with support from relevant predictions (i.e. donut
→ cake and street → cart). Note that the more top predic-

tions in the semantically guided approach become relevant,

clearly demonstrating the efficacy of our proposed ideas.

For typical failure cases, We break them down into 4 cat-

egories, as shown in Figure 6. From left to right, we sum-

marize the causes of failure as (1) plausible answers, (2)

attention errors (3) lack of semantic support in prediction
(4) plural/singular words. We will describe each case be-

low in details.

The first case refers to the model giving a wrong but

plausibly correct answer. As mentioned in Section 3, one

desired feature that our model owns is that it tends to pre-

dict a semantically plausible answer when having problem

identifying the correct one. This is illustrated in Figure 6(a)

where our semantically guided model (A3) chooses suitcase
as the correct answer, which is not bad in comparison to the

ground truth answer bags.

The second type of errors results from the baseline when

it fails to focus attention on the right region(s) in the im-

ages. In such a case, the approach tends to produce random

answers less relevant to the questions. As seen in Figure

6(b), none of the top-4 predictions are actually related to

the correct answer skateboard.

The third type of errors occurs when the correct answer,

though predicted as one of the top answers, cannot possess

sufficient support from other top answers. An example is

given in Figure 6(c) where scissors appear to be semanti-

cally distant from other predictions. In the future we plan

to identify relevant concepts in the question along the same

direction to address this issue.

Lastly, our approach occasionally switches an answer of

singular word to its plural form or vice versa, as shown

in Figure 6(d). This confusion is largely because singular-
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Q: what is the girl wearing a t-shirt 
with a cake decoration on it eats ? 

A1: donut:0.63 fork:0.15 sandwich:
0.05 cake:0.03 pastry:0.03 
A2: cake:0.32 fork:0.15 donut:0.14 
toothbrush:0.05 plate:0.05 
A3: cake:0.70 donut:0.15 toothbrush:
0.05 pastry:0.02 candles:0.02 

Q: what is the color of the upside-down ? 

A1: red:0.89 purple:0.08 green:0.01 blue:
0.01 black:0.00 
A2: purple:0.35 red:0.35 black:0.13 blue:
0.12 green:0.02 
A3: purple:0.44 blue:0.22 red:0.18 black:
0.08 green:0.04 

Q: how many ducks are swimming 
on top of the water ? 

A1: three:0.76 four:0.13 two:0.11 five:
0.00 one:0.00 
A2: four:0.59 five:0.25 three:0.08 seven:
0.04 six:0.03 
A3: four:0.48 three:0.48 five:0.03 two:
0.01 six:0.00 

Q: where are two white horses pulling 
some people ? 

A1: street:0.41 cart:0.30 carriage:0.19 
wagon:0.07 road:0.03 
A2: street:0.75 cart:0.08 car:0.05 road:0.02 
wagon:0.02 
A3: cart:0.51 street:0.27 wagon:0.05 
carriage:0.04 road:0.04 

Figure 5. Successful examples of our proposed approach on COCO-QA dataset [29]. In text, we index each example (a) to (d) from left

to right. Followed by the question (start by “Q”), we list three sets of top-5 predicted answers marked as “A1”, “A2” and “A3”. They

represent the co-attention baseline (HieCoAtten), the MIL-based cross entropy method (MIL-CoAtten) and the MIL-based average vector

method (CoAtten+WAV(MIL)), respectively. All the predicted answers are followed by their prediction probabilities. Ground-truth labels

are colored in red. The related predictions are colored in blue for the ease of illustration.

Q: what are grouped together in the waiting 
area ? (GT: bags) Q: what is the man riding down the street ? 

A1: bicycle:0.99 motorcycle:0.01 bicycles:
0.00 horse:0.00 scooter:0.00 
A2: bicycle:1.00 motorcycle:0.00 bicycles:
0.00 scooter:0.00 skateboard:0.00  
A3: bicycle:0.98 motorcycle:0.01 bicycles:
0.00 scooter:0.00 skateboard:0.00 

Q: what resting in the cup with markers 
and other tools ? 
A1:container:8.70 cup:7.54 bucket:7.53 
toothbrush:7.00 case:6.29 device:5.98 
A2: spoon:0.32 cup:0.24 cups:0.04 
container:0.04 scissors:0.04 
A3: spoon:0.08 cup:0.07 tray:0.06 
device:0.05 scissors:0.04 

A1: bicycle:0.99 motorcycle:0.01 bicycles:
0.00 horse:0.00 scooter:0.00 
A2: toys:0.61 motorcycles:0.13 scooters:
0.11 dogs:0.08 hats:0.07 
A3: suitcases:0.77 luggage:0.09 bags:0.01 
boards:0.01 surfboards:0.01  

Q: what filled with different food on a 
table ? 
A1: plates:0.84 plate:0.16 tray:0.00 
bowl:0.00 platter:0.00 
A2: plate:0.70 plates:0.30 tray:0.00 
platter:0.00 bowl:0.00 
A3: plates:0.83 plate:0.16 tray:0.00 
containers:0.00 bowl:0.00 

Figure 6. Failure examples of our proposed approach on COCO-QA dataset [29]. In text, we index each example (a) to (d) from left

to right. Followed by the question (start by “Q”), we list three sets of top-5 predicted answers marked as “A1”, “A2” and “A3”. They

represent the co-attention baseline (HieCoAtten), the MIL-based cross entropy method (MIL-CoAtten) and the MIL-based average vector

method (CoAtten+WAV(MIL)), respectively. Ground-truth labels are colored in red. The semantically related answers are colored in blue.
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Figure 7. Sensitivity analysis of parameter λ on COCO-QA.

plural relationships are contextually dependent and hard to

be accurately described by word2vec. Answers based on

singular or plural words are not uncommon in our data, es-

pecially in COCO-QA. Fortunately, their impact is not just

one way, leaving it out as a major concern.

5. Conclusion

In this paper we suggested two new ideas in the context

of visual question answering. The first is to inject exter-

nal semantic knowledge during training by designing a loss

function which takes into account the semantic relatedness

between the predictions and the ground truth. The second

is to enrich the visual representation of attention models by

extracting visual features from a MIL model. This provides

representations for concepts beyond objects such as actions,

colors etc. We applied these ideas on two VQA benchmarks

and obtained competitive performance comparable to the

state of the art.
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